banner



What Is One Way Intensive Agriculture Can Contribute To Climate Change

Reducing food's environmental impacts through producers and consumers

The global impacts of food product

Nutrient is produced and candy by millions of farmers and intermediaries globally, with substantial associated environmental costs. Given the heterogeneity of producers, what is the best manner to reduce nutrient's environmental impacts? Poore and Nemecek consolidated data on the multiple environmental impacts of ∼38,000 farms producing 40 unlike agronomical goods effectually the world in a meta-analysis comparing diverse types of nutrient product systems. The environmental cost of producing the aforementioned goods can exist highly variable. Withal, this heterogeneity creates opportunities to target the small-scale numbers of producers that accept the near bear upon.

Science, this issue p. 987

Abstract

Nutrient's environmental impacts are created by millions of various producers. To identify solutions that are effective nether this heterogeneity, we consolidated data roofing five environmental indicators; 38,700 farms; and 1600 processors, packaging types, and retailers. Impact can vary 50-fold amongst producers of the aforementioned product, creating substantial mitigation opportunities. However, mitigation is complicated by trade-offs, multiple means for producers to achieve depression impacts, and interactions throughout the supply concatenation. Producers have limits on how far they can reduce impacts. Most strikingly, impacts of the lowest-impact animate being products typically exceed those of vegetable substitutes, providing new evidence for the importance of dietary change. Cumulatively, our findings support an arroyo where producers monitor their ain impacts, flexibly run across environmental targets past choosing from multiple practices, and communicate their impacts to consumers.

Get full admission to this article

View all available purchase options and go full access to this article.

Already a Subscriber?Sign In

Supplementary Material

Summary

Materials and Methods

Supplementary Text

Figs. S1 to S14

Tables S1 to S17

References (41 151)

Data S1 and S2

Resources

File (aaq0216-poore-sm-revision1.pdf)

File (aaq0216-poore-sm.pdf)

File (aaq0216_datas1.xls)

File (aaq0216_datas2.xls)

References and Notes

ane

H. C. J. Godfray, J. R. Beddington, I. R. Crute, L. Haddad, D. Lawrence, J. F. Muir, J. Pretty, S. Robinson, S. M. Thomas, C. Toulmin, Nutrient security: The challenge of feeding 9 billion people. Science 327, 812–818 (2010).

2

J. A. Foley, N. Ramankutty, One thousand. A. Brauman, Eastward. S. Cassidy, J. South. Gerber, K. Johnston, N. D. Mueller, C. O'Connell, D. K. Ray, P. C. West, C. Balzer, E. Thou. Bennett, S. R. Carpenter, J. Hill, C. Monfreda, S. Polasky, J. Rockström, J. Sheehan, S. Siebert, D. Tilman, D. P. M. Zaks, Solutions for a cultivated planet. Nature 478, 337–342 (2011).

three

FAO, "The country of food and agriculture" (FAO, 2014).

5

FAO, "The second report on the state of the world's constitute genetic resources for food and agriculture" (FAO, 2010).

6

One thousand. M. Carlson, J. S. Gerber, N. D. Mueller, M. Herrero, Chiliad. K. MacDonald, K. A. Brauman, P. Havlik, C. Southward. O'Connell, J. A. Johnson, S. Saatchi, P. C. West, Greenhouse gas emissions intensity of global croplands. Nat. Clim. Alter seven, 63–68 (2016).

vii

P. C. Westward, J. South. Gerber, P. M. Engstrom, N. D. Mueller, G. A. Brauman, K. M. Carlson, E. S. Cassidy, M. Johnston, G. K. MacDonald, D. K. Ray, South. Siebert, Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).

viii

P. J. Gerber, H. Steinfeld, B. Henderson, A. Mottet, C. Opio, J. Dijkman, A. Falcucci, Yard. Tempio, "Tackling climate change through livestock: A global assessment of emissions and mitigation opportunities" (FAO, 2013).

ix

European Commission, "Recommendation 2013/179/Eu on the employ of common methods to measure and communicate the life cycle environmental performance of products and organisations" (European Commission, 2013).

10

S. Hellweg, 50. Milà i Canals, Emerging approaches, challenges and opportunities in life bike assessment. Science 344, 1109–1113 (2014).

eleven

K. Paustian, Bridging the information gap: Engaging developing state farmers in greenhouse gas bookkeeping. Environ. Res. Lett. 8, 021001 (2013).

12

S. Clune, East. Crossin, K. Verghese, Systematic review of greenhouse gas emissions for different fresh food categories. J. Make clean. Prod. 140, 766–783 (2017).

13

D. Tilman, M. Clark, Global diets link ecology sustainability and human being health. Nature 515, 518–522 (2014).

14

G. Clark, D. Tilman, Comparative assay of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 12, 064016 (2017).

fifteen

Chiliad. de Vries, I. J. One thousand. de Boer, Comparison ecology impacts for livestock products: A review of life bike assessments. Livest. Sci. 128, ane–eleven (2010).

16

D. Nijdam, T. Rood, H. Westhoek, The toll of protein: Review of land utilise and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 37, 760–770 (2012).

17

Run across the supplementary materials.

18

West. Steffen, K. Richardson, J. Rockström, S. E. Cornell, I. Fetzer, E. M. Bennett, R. Biggs, S. R. Carpenter, W. de Vries, C. A. de Wit, C. Folke, D. Gerten, J. Heinke, G. K. Mace, L. One thousand. Persson, V. Ramanathan, B. Reyers, S. Sörlin, Planetary boundaries: Guiding human evolution on a changing planet. Science 347, 1259855 (2015).

xix

A. F. Bouwman, D. P. Van Vuuren, R. G. Derwent, M. Posch, A global analysis of acidification and eutrophication of terrestrial ecosystems. H2o Air Soil Pollut. 141, 349–382 (2002).

xx

Eastward. Röös, C. Sundberg, P. Tidåker, I. Strid, P.-A. Hansson, Can carbon footprint serve as an indicator of the ecology bear on of meat production? Ecol. Indic. 24, 573–581 (2013).

21

E. Beza, J. V. Silva, 50. Kooistra, P. Reidsma, Review of yield gap explaining factors and opportunities for culling data collection approaches. Eur. J. Agron. 82, 206–222 (2017).

22

Z. Cui, L. Wu, Y. L. Ye, Westward. Q. Ma, Ten. P. Chen, F. S. Zhang, Merchandise-offs between loftier yields and greenhouse gas emissions in irrigation wheat cropland in China. Biogeosciences 11, 2287–2294 (2014).

23

J. Yard. Ladha, A. N. Rao, A. Yard. Raman, A. T. Padre, A. Dobermann, M. Gathala, 5. Kumar, Y. Saharawat, S. Sharma, H. P. Piepho, Grand. M. Alam, R. Liak, R. Rajendran, C. K. Reddy, R. Parsad, P. C. Sharma, S. S. Singh, A. Saha, S. Noor, Agronomic improvements tin brand future cereal systems in South Asia far more productive and event in a lower environmental footprint. Global Change Biol. 22, 1054–1074 (2016).

24

Z. Cui, H. Zhang, X. Chen, C. Zhang, Due west. Ma, C. Huang, Westward. Zhang, 1000. Mi, Y. Miao, X. Li, Q. Gao, J. Yang, Z. Wang, Y. Ye, S. Guo, J. Lu, J. Huang, S. Lv, Y. Sunday, Y. Liu, Ten. Peng, J. Ren, S. Li, X. Deng, X. Shi, Q. Zhang, Z. Yang, L. Tang, C. Wei, L. Jia, J. Zhang, Thousand. He, Y. Tong, Q. Tang, X. Zhong, Z. Liu, North. Cao, C. Kou, H. Ying, Y. Yin, X. Jiao, Q. Zhang, M. Fan, R. Jiang, F. Zhang, Z. Dou, Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–366 (2018).

25

P. Smith, Grand. Bustamante, H. Ahammad, H. Clark, H. Dong, E. A. Elsiddig, H. Haberl, R. Harper, J. House, G. Jafari, O. Masera, C. Mbow, Northward. H. Ravindranath, C. Due west. Rice, C. Robledo Abad, A. Romanovskaya, F. Sperling, F. Due north. Tubiello, G. Berndes, S. Bolwig, H. Böttcher, R. Bright, F. Cherubini, H. Chum, E. Corbera, F. Creutzig, M. Delucchi, A. Faaij, J. Fargione, G. Hänsel, G. Heath, M. Herrero, R. Houghton, H. Jacobs, A. K. Jain, Eastward. Kato, O. Lucon, D. Pauly, R. Plevin, A. Popp, J. R. Porter, B. Poulter, Due south. Rose, A. de Siqueira Pinto, S. Sohi, B. Stocker, A. Strømman, S. Suh, J. van Minnen, T. Krug, Thousand. Nabuurs, M. Molodovskaya, in Climate Alter 2014: Mitigation of Climate Change (Cambridge Univ. Press, 2015), pp. 811–922.

26

East. Song, B. L. Nelson, J. Staum, Shapley effects for global sensitivity assay: Theory and computation. SIAM/ASA J. Uncertain. Quantif. 4, 1060–1083 (2016).

27

Q. Yu, W. Wu, L. Y'all, T. Zhu, J. van Vliet, P. H. Verburg, Z. Liu, Z. Li, P. Yang, Q. Zhou, H. Tang, Assessing the harvested area gap in China. Agric. Syst. 153, 212–220 (2017).

28

R. North. German, C. E. Thompson, T. G. Benton, Relationships among multiple aspects of agriculture's environmental impact and productivity: A meta-analysis to guide sustainable agronomics. Biol. Rev. Cambridge Philos. Soc. 92, 716–738 (2017).

29

R. Lal, Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global Chang. Biol. 10.1111/gcb.14054 (2018).

thirty

P. Smith, D. Martino, Z. Cai, D. Gwary, H. Janzen, P. Kumar, B. McCarl, Due south. Ogle, F. O'Mara, C. Rice, Policy and technological constraints to implementation of greenhouse gas mitigation options in agronomics. Agric. Ecosyst. Environ. 118, half-dozen–28 (2007).

31

K. B. Waldman, J. M. Kerr, Limitations of certification and supply chain standards for environmental protection in commodity ingather production. Annu. Rev. Resour. Econ. 6, 429–449 (2014).

33

D. C. Nepstad, W. Boyd, C. M. Stickler, T. Bezerra, A. A. Azevedo, Responding to climate change and the global land crisis: REDD+, market transformation and low-emissions rural development. Philos. Trans. R. Soc. London Ser. B 368, 20120167 (2013).

34

A. Mottet, C. de Haan, A. Falcucci, Yard. Tempio, C. Opio, P. Gerber, Livestock: On our plates or eating at our table? A new analysis of the feed/food contend. Global Food Sec. 14, 1–viii (2017).

35

M. Springmann, D. Mason-D'Croz, S. Robinson, K. Wiebe, H. C. J. Godfray, M. Rayner, P. Scarborough, Mitigation potential and global health impacts from emissions pricing of food commodities. Nat. Clim. Change 7, 69–74 (2016).

36

K. Denef, K. Paustian, Southward. Archibeque, S. Biggar, D. Pape, "Report of greenhouse gas accounting tools for agriculture and forestry sectors" (Interim written report to U.S. Department of Agronomics under contract no. GS­23F­8182H, ICF International, 2012).

37

GSM Association (GSMA), "Creating scalable, engaging mobile solutions for agriculture" (GSMA, 2017).

38

Organisation for Economic Co-operation and Evolution (OECD), "Agriculture policy monitoring and evaluation 2017" (OECD, 2017).

39

Chiliad. Segerson, Voluntary approaches to ecology protection and resource direction. Annu. Rev. Resour. Economics 5, 161–180 (2013).

40

European Parliament and Quango, "Establishing a common organization of the markets in agronomical products" [Regulation (Eu) 1308/2013, European Union, 2013].

41

J. Pryshlakivsky, C. Searcy, Fifteen years of ISO 14040: A review. J. Clean. Prod. 57, 115–123 (2013).

42

T. C. Ponsioen, H. K. G. van der Werf, 5 propositions to harmonize environmental footprints of nutrient and beverages. J. Make clean. Prod. 153, 457–464 (2017).

43

Intergovernmental Console on Climate Change (IPCC), Climate Change 2013: The Physical Science Basis (Cambridge Univ. Press, 2013).

44

CML, "CML2 Baseline Method 2000" (CML, 2001).

45

A. M. Boulay, J. Bare, L. Benini, M. Berger, M. J. Lathuillière, A. Manzardo, Grand. Margni, M. Motoshita, M. Núñez, A. 5. Pastor, B. Ridoutt, T. Oki, S. Worbe, S. Pfister, The WULCA consensus characterization model for water scarcity footprints: Assessing impacts of h2o consumption based on bachelor h2o remaining (Aware). Int. J. Life Cycle Assess. 23, 368–378 (2018).

46

IPCC, Climate change 2007: Mitigation of Climate Change (Cambridge Univ. Press, 2007).

47

GADM Database of Global Authoritative Areas (v. two.vii), world wide web.gadm.org/.

48

FAO, "Harmonized World Soil Database (version ane.two)" (FAO, 2012).

49

N. H. Batjes, "World soil holding estimates for broad-scale modelling (WISE30sec)" (ISRIC report 2015/01, Globe Soil Information, 2015).

50

L. Scherer, S. Pfister, Modelling spatially explicit impacts from phosphorus emissions in agriculture. Int. J. Life Cycle Assess. twenty, 785–795 (2015).

51

J. Danielson, D. Gesch, An enhanced global elevation model generalized from multiple higher resolution source datasets. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVII, 1857–1864 (2008).

52

R. J. Hijmans, S. Eastward. Cameron, J. 50. Parra, P. M. Jones, A. Jarvis, Very loftier resolution interpolated climate surfaces for global country areas. Int. J. Climatol. 25, 1965–1978 (2005).

53

R. J. Zomer, A. Trabucco, O. van Straaten, D. A. Bossio, "Carbon, country and water: A global analysis of the hydrologic dimensions of climate change mitigation through tree planting/reforestation" (Enquiry report 101, International Water Direction Plant, 2006).

54

R. Hiederer, F. Ramos, C. Capitani, R. Koeble, Five. Blujdea, O. Gomez, D. Mulligan, L. Marelli, "Biofuels: A new methodology to estimate GHG emissions from global land use alter" (European Commission Joint Inquiry Centre, 2010).

55

S. Pfister, P. Bayer, A. Koehler, S. Hellweg, Environmental impacts of water use in global ingather production: Hotspots and merchandise-offs with country use. Environ. Sci. Technol. 45, 5761–5768 (2011).

56

F. T. Portmann, Due south. Siebert, P. Döll, MIRCA2000—global monthly irrigated and rainfed crop areas effectually the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochem. Cycles 24, GB1011 (2010).

57

A. K. Chapagain, A. Y. Hoekstra, The bluish, green and grey water footprint of rice from production and consumption perspectives. Ecol. Econ. lxx, 749–758 (2011).

58

T. Nemecek, X. Bengoa, V. Rossi, S. Humbert, J. Lansche, P. Mouron, E. Riedener, "Earth Food LCA Database: Methodological guidelines for the life cycle inventory of agricultural products" (Quantis and Agroscope, version 3.0, 2015).

60

R. M. Allen, 50. S. Pereira, D. Raes, M. Smith, "Crop evapotranspiration: Guidelines for computing crop requirements" (FAO irrigation and drainage paper 56, FAO, 1998).

61

South. Siebert, F. T. Portmann, P. Doll, Global patterns of cropland employ intensity. Remote Sens. 2, 1625–1643 (2010).

62

N. Ramankutty, A. T. Evan, C. Monfreda, J. Foley, Farming the planet: ane. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 22, GB1003 (2008).

63

J. Webb, Southward. One thousand. Sommer, T. Kupper, K. Groenestein, N. J. Hutchings, B. Eurich-Menden, L. Rodhe, T. H. Misselbrook, B. Amon, in Agricultural ecology and Strategies for Climatic change, vol. 8 of Sustainable Agriculture Reviews, E. Lichtfouse, Ed. (Springer, 2012), pp. 67–107.

64

J. Sintermann, A. Neftel, C. Ammann, C. Häni, A. Hensen, B. Loubet, C. R. Flechard, Are ammonia emissions from field-applied slurry substantially over-estimated in European emission inventories? Biogeosciences 9, 1611–1632 (2012).

65

Five. Colomb, S. Ait Amar, C. Basset Mens, A. Gac, G. Gaillard, P. Koch, J. Mousset, T. Salou, A. Tailleur, H. Thousand. G. van der Werf, AGRIBALYSE®, the French LCI Database for agricultural products: loftier quality information for producers and environmental labelling. Oilseeds Fats Crops Lipids 22, D104 (2015).

66

American Society of Agronomical Engineers (ASAE), "Manure production and characteristics" (ASAE, 2005).

67

European Environment Agency (EEA), "EMEP/EEA air pollutant emission inventory guidebook 2013: Technical guidance to fix national emission inventories" (Technical report 12/2013, EEA, 2013).

68

T. V. Vellinga, H. Blonk, K. Marinussen, W. J. van Zeist, I. J. M. de Boer, D. Starmans, "Methodology used in FeedPrint: A tool quantifying greenhouse gas emissions of feed product and utilization" (Report 674, Wageningen UR Livestock Inquiry, 2013).

71

IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, H. Due south. Eggleston, L. Buendia, K. Miwa, T. Ngara, Yard. Tanabe, Eds. (Institute for Global Environmental Strategies, 2006).

72

H. Kowata, H. Moriyama, K. Hayashi, H. Kato, in Proceedings of the 6th International Conference on LCA in the Agri-Food Sector: Towards a Sustainable Direction of the Food Chain, Zurich, Switzerland, 12 to 14 November 2008 (Agroscope Reckenholz-Tänikon Research Station Art, 2009), pp. 49–57.

73

M. Thou. Mekonnen, A. Y. Hoekstra, "The green, blue and grey water footprint of farm animals and beast products" (Value of Water Research Report Series no. 48, UNESCO-IHE Institute for Water Education, 2010).

74

United Nations Evolution Programme (UNDP), "Human development report 2014" (UNDP, 2014).

75

Chiliad. Hauschild, J. Potting, "Spatial differentiation in Life Cycle impact cess: The EDIP2003 methodology" (Ecology News no. fourscore, Danish Ministry building of the Environment, 2005).

76

Yard. Goedkoop, R. Heijungs, G. Huijbregts, A. De Schryver, J. Struijs, R. van Zelm, "ReCiPe 2008: A life wheel impact assessment method which comprises harmonised category indicators at the midpoint and endpoint level" (Ministry of Housing, Spatial Planning and Environment, 2009).

78

FAO, "Yield and nutritional value of the commercially more important fish species" (FAO, 1989).

79

International Dairy Federation (IDF), "A common carbon footprint approach for dairy: The IDF guide to standard lifecycle assessment methodology for the dairy sector," Bull. Int. Dairy Fed. (no. 445) (2010).

80

C. Opio, P. Gerber, A. Mottet, A. Falcucci, Grand. Tempio, M. MacLeod, T. Vellinga, B. Henderson, H. Steinfeld, "Greenhouse gas emissions from ruminant supply chains: A global life cycle cess" (FAO, 2013).

81

T. Nemecek, F. Hayer, East. Bonnin, B. Carrouée, A. Schneider, C. Vivier, Designing eco-efficient crop rotations using life cycle assessment of crop combinations. Eur. J. Agron. 65, 40–51 (2015).

82

FAO, "Tree crops: Guidelines for estimating area information" (FAO, 2011).

83

B. P. Weidema, C. Bauer, R. Hischier, C. Mutel, T. Nemecek, J. Reinhard, C. O. Vadenbo, G. Wernet, "Overview and methodology: Data quality guideline for the ecoinvent database version 3" (ecoinvent report i, ecoinvent Middle, 2013).

84

E. Stehfest, L. Bouwman, N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing bachelor measurement data and modeling of global annual emissions. Nutr. Cycl. Agroecosyst. 74, 207–228 (2006).

85

EEA, "EMEP/EEA air pollutant emission inventory guidebook 2016: Technical guidance to prepare national emission inventories" (Written report 21/2016, EEA, 2016).

86

F. J. de Ruijter, J. F. 1000. Huijsmans, B. Rutgers, Ammonia volatilization from ingather residues and frozen light-green manure crops. Atmos. Environ. 44, 3362–3368 (2010).

87

Southward. K. Akagi, R. J. Yokelson, C. Wiedinmyer, M. J. Alvarado, J. South. Reid, T. Karl, J. D. Crounse, P. O. Wennberg, Emission factors for open and domestic biomass burning for utilise in atmospheric models. Atmos. Chem. Phys. 11, 4039–4072 (2011).

88

F. Due north. Tubiello, R. Biancalani, Chiliad. Salvatore, Due south. Rossi, One thousand. Conchedda, A worldwide assessment of greenhouse gas emissions from tuckered organic soils. Sustainability eight, 371 (2016).

89

E. M. W. Smeets, L. F. Bouwman, E. Stehfest, D. P. van Vuuren, A. Posthuma, Contribution of NiiO to the greenhouse gas balance of start-generation biofuels. Global Change Biol. xv, 1–23 (2009).

90

J. Shan, X. Yan, Effects of crop rest returning on nitrous oxide emissions in agronomical soils. Atmos. Environ. 71, 170–175 (2013).

91

H. Chen, Ten. Li, F. Hu, West. Shi, Soil nitrous oxide emissions following crop residue add-on: A meta-analysis. Global Alter Biol. xix, 2956–2964 (2013).

92

C. Nevison, Review of the IPCC methodology for estimating nitrous oxide emissions associated with agricultural leaching and runoff. Chemosphere Global Modify Sci. ii, 493–500 (2000).

93

Chiliad. Van Drecht, A. F. Bouwman, J. 1000. Knoop, A. H. W. Beusen, C. R. Meinardi, Global modeling of the fate of nitrogen from bespeak and nonpoint sources in soils, groundwater, and surface h2o. Global Biogeochem. Cycles 17, 1115 (2003).

94

I. Thou. Burns, An equation to predict the leaching of surface-practical nitrate. J. Agric. Sci. 85, 443–454 (1975).

95

S. M. Thomas, Southward. F. Ledgard, G. Due south. Francis, Improving estimates of nitrate leaching for quantifying New Zealand's indirect nitrous oxide emissions. Nutr. Cycl. Agroecosyst. 73, 213–226 (2005).

96

J. Liu, L. You, M. Amini, M. Obersteiner, Grand. Herrero, A. J. B. Zehnder, H. Yang, A high-resolution cess on global nitrogen flows in cropland. Proc. Natl. Acad. Sci. U.Southward.A. 107, 8035–8040 (2010).

97

E. Papatryphon, J. Petit, H. M. G. Van Der Werf, G. J. Sadasivam, Grand. Claver, Food-balance modeling every bit a tool for environmental direction in aquaculture: The case of trout farming in France. Environ. Manage. 35, 161–174 (2005).

98

IPCC, "2013 supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands" (IPCC, 2014).

99

U. Dämmgen, "Calculations of emission from German language agriculture: National Emission Inventory Written report (NIR) 2009 for 2007" (Johann Heinrich von Thünen-Institut, 2009).

100

A. Gross, C. Eastward. Boyd, C. Due west. Wood, Nitrogen transformations and balance in channel catfish ponds. Aquac. Eng. 24, 1–xiv (2000).

101

G. L. Schroeder, Carbon and nitrogen budgets in manured fish ponds on Israel's littoral obviously. Aquaculture 62, 259–279 (1987).

102

J. C. Fry, in Detritus and Microbial Ecology in Aquaculture, D. J. W. Moriarty, R. S. Five. Pullin, Eds. (International Center for Living Aquatic Resources Management, 1987), pp. 83–122.

103

W. Lewis Jr., ., Global primary production of lakes: 19th Baldi Memorial Lecture. Inland Waters i, i–28 (2011).

104

G. L. Schroeder, Autotrophic and heterotrophic production of micro-organisms in intensely-manured fish ponds, and related fish yields. Aquaculture xiv, 303–325 (1978).

105

X. Wang, K. Andresen, A. Handå, B. Jensen, K. I. Reitan, Y. Olsen, Chemic limerick and release rate of waste discharge from an Atlantic salmon farm with an evaluation of IMTA feasibility. Aquac. Environ. Interact. 4, 147–162 (2013).

106

R. D. Fallon, S. Harrits, R. S. Hanson, T. D. Brock, The role of methane in internal carbon cycling in Lake Mendota during summer stratification. Limnol. Oceanogr. 25, 357–360 (1980).

107

Yard. Chiliad. Kuivila, J. W. Murray, A. H. Devol, One thousand. Eastward. Lidstrom, C. Eastward. Reimers, Methyl hydride cycling in the sediments of Lake Washington. Limnol. Oceanogr. 33, 571–581 (1988).

108

O. J. Hall, L. G. Anderson, O. Holby, S. Kollberg, M.-O. Samuelsson, Chemic flux and mass balances in a marine fish cage farm. I. Carbon. Mar. Ecol. Prog. Ser. 61, 61–73 (1990).

109

D. One thousand. Alongi, A. D. McKinnon, R. Brinkman, L. A. Trott, Thou. C. Undu, Muawanah, Rachmansyah, The fate of organic thing derived from minor fish cage aquaculture in coastal waters of Sulawesi and Sumatra, Indonesia. Aquaculture 295, threescore–75 (2009).

110

D. Bastviken, L. J. Tranvik, J. A. Downing, P. M. Crill, A. Enrich-Prast, Freshwater methyl hydride emissions start the continental carbon sink. Scientific discipline 331, 50 (2011).

111

A. K. Detweiler, B. M. Bebout, A. Due east. Frisbee, C. A. Kelley, J. P. Chanton, Fifty. E. Prufert-Bebout, Characterization of marsh gas flux from photosynthetic oxidation ponds in a wastewater treatment establish. H2o Sci. Technol. 70, 980–989 (2014).

112

D. Bastviken, J. J. Cole, Yard. L. Pace, G. C. Van de Bogert, Fates of methane from dissimilar lake habitats: Connecting whole-lake budgets and CHiv emissions. J. Geophys. Res. 113, G02024 (2008).

113

Ecology Protection Agency (EPA), "Inventory of U.S. greenhouse gas emissions and sinks: 1990–2014" (EPA, 2016).

114

Thou. Holmer, D. Wildish, B. Hargrave, "Organic enrichment from marine finfish aquaculture and effects on sediment biogeochemical processes," in Handbook of Environmental Chemistry, vol. 5M, Ecology Furnishings of Marine Finfish Aquaculture, B. T. Hargrave, Ed. (Springer, 2005), pp. 181–206.

115

K. I. Suhr, C. O. Letelier-Gordo, I. Lund, Anaerobic digestion of solid waste in RAS: Effect of reactor type on the biochemical acidogenic potential (BAP) and cess of the biochemical methane potential (BMP) past a batch assay. Aquac. Eng. 65, 65–71 (2015).

116

Blonk Consultants, Straight Country Utilize Change Assessment Tool, version 2013.one (2013).

118

The British Standards Establishment, "Publicly available specification (PAS 2050: 2011)" (British Standards Institution, 2011).

119

South. Rossi, F. N. Tubiello, P. Prosperi, M. Salvatore, H. Jacobs, R. Biancalani, J. I. House, L. Boschetti, FAOSTAT estimates of greenhouse gas emissions from biomass and peat fires. Clim. Change 135, 699–711 (2016).

120

N. Hosonuma, Thou. Herold, V. De Sy, R. S. De Fries, One thousand. Brockhaus, L. Verchot, A. Angelsen, E. Romijn, An cess of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. vii, 044009 (2012).

121

Thou. C. C. Hansen, P. Five. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, J. R. Grand. Townshend, Loftier-resolution global maps of 21st-century forest encompass modify. Science 342, 850–853 (2013).

123

L. Fulton, P. Cazzola, F. Cuenot, IEA Mobility Model (MoMo) and its use in the ETP 2008. Energy Policy 37, 3758–3768 (2009).

124

Un Conference on Trade and Development (UNCTAD), "Review of maritime transport 2015" (UNCTAD, 2015).

126

S. J. James, C. James, The food common cold-chain and climate change. Food Res. Int. 43, 1944–1956 (2010).

127

G. Wernet, C. Bauer, B. Steubing, J. Reinhard, E. Moreno-Ruiz, B. Weidema, The ecoinvent database version iii (part I): Overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016).

128

FAO, "Global nutrient losses and nutrient waste—extent, causes and prevention" (FAO, 2011).

129

FAO, "Food balance sheets: A handbook" (FAO, 2001).

130

J. Gustavsson, C. Cederberg, U. Sonesson, A. Emanuelsson, "The methodology of the FAO study: 'Global nutrient losses and food waste—extent, causes and prevention' - FAO, 2011" [Swedish Institute for Food and Biotechnology (SIK) report 857, SIK, 2013].

132

S. Siebert, J. Burke, J. Yard. Faures, K. Frenken, J. Hoogeveen, P. Döll, F. T. Portmann, Groundwater use for irrigation – a global inventory. Hydrol. Earth Syst. Sci. fourteen, 1863–1880 (2010).

133

Research Found of Organic Agriculture (FiBL) and International Federation of Organic Agriculture Movements (IFOAM), in The World of Organic Agriculture: Statistics and Emerging Trends 2014, H. Willer, J. Lernoud, Eds. (FiBL and IFOAM, 2014).

134

International Institute for Practical Systems Analysis/FAO, "Global Agro-Ecological Zones (GAEZ v3.0) user'south guide" (FAO and IIASA, 2012).

136

FAO, "Global livestock environmental assessment model: Reference documentation v2.0" (FAO, 2016).

137

National Development and Reform Commission of China, "National information compilation of revenue and cost of agricultural products 2013" (Red china Statistics Press, 2013).

138

E. C. Ellis, G. Klein Goldewijk, Southward. Siebert, D. Lightman, N. Ramankutty, Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).

139

M. Herrero, P. Havlík, H. Valin, A. Notenbaert, One thousand. C. Rufino, P. One thousand. Thornton, M. Blümmel, F. Weiss, D. Grace, 1000. Obersteiner, Biomass employ, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. Acad. Sci. The statesA. 110, 20888–20893 (2013).

140

R. A. Houghton, J. I. Firm, J. Pongratz, Thousand. R. van der Werf, R. S. DeFries, M. C. Hansen, C. Le Quéré, N. Ramankutty, Carbon emissions from land use and state-cover change. Biogeosciences 9, 5125–5142 (2012).

141

P. Friedlingstein, R. M. Andrew, J. Rogelj, Thou. P. Peters, J. G. Canadell, R. Knutti, G. Luderer, Thousand. R. Raupach, M. Schaeffer, D. P. van Vuuren, C. Le Quéré, Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci. 7, 709–715 (2014).

142

G. Pujol, B. Iooss, A. Janon, One thousand. Boumhaout, S. Da Veiga, T. Delage, J. Fruth, 50. Gilquin, J. Guillaume, Fifty. Le Gratiet, P. Lemaitre, B. L. Nelson, F. Monari, R. Oomen, B. Ramos, O. Roustant, E. Song, J. Staum, T. Touati, F. Weber, sensitivity (R package version 1.fifteen.0, 2017).

143

Due east. H. Haddad, J. Due south. Tanzman, What do vegetarians in the United States eat? Am. J. Clin. Nutr. 78 (suppl.), 626S–632S (2003).

144

M. Springmann, H. C. J. Godfray, Thou. Rayner, P. Scarborough, Analysis and valuation of the wellness and climate change cobenefits of dietary change. Proc. Natl. Acad. Sci. U.S.A. 113, 4146–4151 (2016).

145

H. Darby, M. Hills, Due east. Cummings, R. Madden, "Assessing the value of oilseed meals for soil fertility and weed suppression" (University of Vermont Extension, 2010).

146

Yard. Schmidinger, E. Stehfest,, Including CO2 implications of land occupation in LCAs—method and example for livestock products.. Int. J. Life Wheel Appraise. 17, 962–972 (2012).

148

R. Westward. R. Parker, J. L. Blanchard, C. Gardner, B. Southward. Green, K. Hartmann, P. H. Tyedmers, R. A. Watson, Fuel use and greenhouse gas emissions of world fisheries. Nat. Clim. Change 8, 333–337 (2018).

149

D. Cordell, A. Rosemarin, J. J. Schröder, A. L. Smit, Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere 84, 747–758 (2011).

150

T. Coelli, A. Henningsen, frontier: Stochastic Frontier Analysis (R package version 1.1-2, 2017).

151

G. M. Strassmann, F. Joos, 1000. Fischer , Simulating effects of land use changes on carbon fluxes: Past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink chapters. Tellus Ser. B sixty, 583–603 (2008).

Information & Authors

Information

Published In

Science

Book 360 | Result 6392
1 June 2018

Submission history

Received: 5 October 2017

Accepted: 17 April 2018

Published in print: 1 June 2018

Permissions

Request permissions for this article.

Acknowledgments

We thank the many researchers who provided united states with boosted data, acknowledged in data S1. We are grateful to R. Grenyer, P. Smith, E. J. Milner-Gulland, C. Godfray, One thousand. Gaillard, L. de Baan, Y. Malhi, D. Thomas, K. Javanaud, and K. Afemikhe for comments on the manuscript and Tyana for illustrations. Funding: This work was unfunded. Author contributions: J.P. conducted the analysis and wrote the manuscript. J.P. and T.N. contributed to the study design and data interpretation and reviewed the manuscript. Competing interests: The authors declare no competing interests. Data and materials availability: A Microsoft Excel file allowing full replication of this analysis, containing all original and recalculated information, has been deposited in the Oxford Academy Research Archive (doi.org/x.5287/bodleian:0z9MYbMyZ).

Authors

Affiliations

Department of Zoology, University of Oxford, New Radcliffe House, Oxford OX2 6GG, UK.

School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK.

Agroscope, Agricultural ecology and Environment Research Division, LCA Research Grouping, CH-8046 Zürich, Switzerland.

Notes

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format yous want to consign the citation of this publication.

Cited by
  1. Apparent digestibility coefficients (ADCs) of intact-cell marine microalgae meal (Pavlova sp. 459) for juvenile Atlantic salmon (Salmo salar 50.), Aquaculture, 546, (737236), (2022).https://doi.org/ten.1016/j.aquaculture.2021.737236
  2. An integrative bio-concrete approach to determine the greenhouse gas emissions and carbon sinks of a cow and her offspring in a beef cattle operation: A organization dynamics approach, Agronomical Systems, 195, (103286), (2022).https://doi.org/ten.1016/j.agsy.2021.103286
  3. Climate impact from agricultural direction practices in the Canadian Prairies: Carbon equivalence due to albedo change, Periodical of Environmental Management, 302, (113938), (2022).https://doi.org/10.1016/j.jenvman.2021.113938
  4. The economic, environmental and social performance of European certified food, Ecological Economic science, 191, (107244), (2022).https://doi.org/10.1016/j.ecolecon.2021.107244
  5. Exploring the pathways towards the mitigation of the environmental impacts of nutrient consumption, Science of The Total Environs, 806, (150528), (2022).https://doi.org/10.1016/j.scitotenv.2021.150528
  6. Cooperation between specialized livestock and crop farms can reduce ecology footprints and increase cyberspace profits in livestock production, Journal of Environmental Management, 302, (113960), (2022).https://doi.org/x.1016/j.jenvman.2021.113960
  7. Escaping from the meat paradox: How morality and disgust affect meat-related ambivalence, Ambition, 168, (105721), (2022).https://doi.org/10.1016/j.appet.2021.105721
  8. Setting the scene, The Evolutionary Ecology of Invasive Species, (one-ix), (2022).https://doi.org/10.1016/B978-0-12-818378-6.00003-vi
  9. Meals in the melting-pot: Immigration and dietary modify in diversifying cities, Ambition, 168, (105728), (2022).https://doi.org/10.1016/j.appet.2021.105728
  10. Dietary behaviour as a form of collective action: A social identity model of vegan activism, Appetite, 168, (105730), (2022).https://doi.org/10.1016/j.appet.2021.105730
  11. Come across more

View Options

Go Admission

View options

PDF format

Download this commodity as a PDF file

Download PDF

Media

Figures

Multimedia

Tables

Source: https://www.science.org/doi/10.1126/science.aaq0216

Posted by: dejesuswhind1980.blogspot.com

0 Response to "What Is One Way Intensive Agriculture Can Contribute To Climate Change"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel